Surveying Engineering Lecture 3: Bearings

Dr. Eng. Hassan Mohamed Hassan

 Hassan.hussein@feng.bu.edu.eg Geomatics Department
Contents

1. Coordinate Systems
2. Plane Coordinate System
3. WCB-QB, FB-BB
4. Coordinates main concept

Coordinate Systems

1- Geographic or geodetic coordinate systems (Φ, Ω, h) or (X, Y,Z)
2- Plane coordinates: Cartesian (X,Y) or (E,N)

Plane Coordinate System

1- Cartesian (X,Y) or (E,N)

Coordinates of point

Components of a line

Whole Circle Bearing (WCB)

1- Azimuth of the line (WCB): It's the angle measured from the North direction to the line in the clockwise direction.

$$
\begin{aligned}
& r=270 \rightarrow 360 \mathrm{~B} \quad \mathrm{r}_{\mathrm{B}}=0 \rightarrow 90 \\
& \Delta E=-r e \quad \text { : } \quad \Delta E=-r e \\
& \Delta N=-r e \\
& \text { A } \\
& \Delta V=-v e \\
& y_{1}=180 \rightarrow 270 \\
& x=90 \rightarrow 180 \\
& \Delta E=-v e \\
& \Delta V=-v e \\
& \Delta E=+r e \\
& \text { B } \quad \Delta V=-v e
\end{aligned}
$$

If α negative then add 360° if $\alpha>360^{\circ}$ then subtract 360°.

Forward Bearing (FB) and Back Bearing (BB)

1- The relation between the Forward Bearing (FB) and Back Bearing (BB).

$$
\begin{aligned}
& \text { (a) } \\
& x_{B-1}=x_{-1 B} \pm 180^{\circ} \\
& \text { if } x_{-A B}>180^{\circ} \rightarrow- \\
& \text { if } x_{-I B}<180^{\circ} \rightarrow+ \\
& \text { Ex: } \\
& \digamma_{A B}=227^{\circ} \rightarrow 夭_{B, i}=227-180=47 \\
& r_{A B}=118^{\circ} \rightarrow x_{B A 1}=118-180=298^{\circ}
\end{aligned}
$$

Quadrant Bearing (QB)

It is the angle between the line and North-South direction whichever closer in clockwise or anticlockwise direction.

$$
\begin{aligned}
& \quad Q=0 \rightarrow 90^{\circ} \\
& \text { Ex: } \\
& \text { If } \propto=240^{\circ} \\
& Q=240^{\circ}-180^{\circ}=60^{\circ} \\
& =S 60^{\circ} \mathrm{W}
\end{aligned}
$$

Coordinates main concept

1- Calculation of an angle between 2 bearings:

$$
\propto_{A C}-\propto_{A B}=B A C \quad \text { Angle always in clockwise direction }
$$

2- Calculation of components of a line from length and bearing

$$
\begin{aligned}
& \Delta E_{-A B}=L_{-A B} \sin \alpha_{-A B} \\
& \Delta N_{-A B}=L_{-A B} \cos \alpha_{-A B}
\end{aligned}
$$

If coordinates of A are given, then:

$$
\begin{array}{|l|}
\hline E_{B}=E_{-A}+L_{-A B} \sin \propto_{A B} \\
N_{B}=N_{A}+L_{A B} \cos \propto_{-A B} \\
\hline
\end{array}
$$

Calculation of length and bearing from coord.

1- Calculation of length of a line from coordinates:

$$
\begin{aligned}
& \Delta E_{A B}=E_{B}-E_{A A} \\
& \Delta V_{A B}=N_{B}-N_{A} \\
& L_{A B}=\sqrt{\Delta E_{-A B}^{2}+\Delta N_{A B}^{2}}
\end{aligned}
$$

2- Calculation of bearing of a line from coordinates:

$$
Q_{A B}=\tan ^{-1} \frac{\left|\Delta E_{-A B}\right|}{\left|\Delta N_{A B}\right|}
$$

$\Delta E=-v e$	$\Delta E=+v e$
$\Delta N=+v e$	$\Delta V=+v e$
$\Upsilon_{. A B}=360-Q_{-A B}$	$\Upsilon_{A B}=Q_{A B}$
$\Delta E=-v e$	$\Delta E=-v e$
$\Delta N=-v e$	$\Delta V=-v e$
$\Upsilon_{. A B}=180+O_{A B}$	$\Upsilon_{A B}=180-Q_{. A B}$

Supplementary files:

> https://www.youtube.com/watch?v=L_HgYnLx3sl
> https://www.youtube.com/watch?v=vB8bhi5vbg4
> https://www.youtube.com/watch?v=IM6kWrgsGYw

Please don't use this presentation without getting a permeation from its original owner
Thanks

Dr.Eng. Hassan Mohamed

